Papers Read on AI
Keeping you up to date with the latest trends and best performing architectures in this fast evolving field in computer science. Selecting papers by comparative results, citations and influence we educate you on the latest research. Consider supporting us on Patreon.com/PapersRead for feedback and ideas.
Episodes
2 days ago
2 days ago
Previous studies have typically assumed that large language models are unable to accurately perform arithmetic operations, particularly multiplication of>8 digits, and operations involving decimals and fractions, without the use of calculator tools. This paper aims to challenge this misconception. With sufficient training data, a 2 billion-parameter language model can accurately perform multi-digit arithmetic operations with almost 100% accuracy without data leakage, significantly surpassing GPT-4 (whose multi-digit multiplication accuracy is only 4.3%). We also demonstrate that our MathGLM, fine-tuned from GLM-10B on a dataset with additional multi-step arithmetic operations and math problems described in text, achieves similar performance to GPT-4 on a 5,000-samples Chinese math problem test set. Our code and data are public at https://github.com/THUDM/MathGLM.2023: Z. Yang, Ming Ding, Qingsong Lv, Zhihuan Jiang, Zehai He, Yuyi Guo, Jinfeng Bai, Jie Tanghttps://arxiv.org/pdf/2309.03241v2.pdf
3 days ago
3 days ago
Training data for video segmentation are expensive to annotate. This impedes extensions of end-to-end algorithms to new video segmentation tasks, especially in large-vocabulary settings. To 'track anything' without training on video data for every individual task, we develop a decoupled video segmentation approach (DEVA), composed of task-specific image-level segmentation and class/task-agnostic bi-directional temporal propagation. Due to this design, we only need an image-level model for the target task (which is cheaper to train) and a universal temporal propagation model which is trained once and generalizes across tasks. To effectively combine these two modules, we use bi-directional propagation for (semi-)online fusion of segmentation hypotheses from different frames to generate a coherent segmentation. We show that this decoupled formulation compares favorably to end-to-end approaches in several data-scarce tasks including large-vocabulary video panoptic segmentation, open-world video segmentation, referring video segmentation, and unsupervised video object segmentation. Code is available at: https://hkchengrex.github.io/Tracking-Anything-with-DEVA2023: Ho Kei Cheng, Seoung Wug Oh, Brian L. Price, Alexander Schwing, Joon-Young Leehttps://arxiv.org/pdf/2309.03903v1.pdf
4 days ago
4 days ago
Large Language Models (LLMs) have achieved remarkable results. However, existing models are expensive to train and deploy, and it is also difficult to expand their knowledge beyond pre-training data without forgetting previous knowledge. This paper proposes a new neural network architecture, ModuleFormer, that leverages modularity to improve the efficiency and flexibility of large language models. ModuleFormer is based on the Sparse Mixture of Experts (SMoE). Unlike the previous SMoE-based modular language model, which requires domain-labeled data to learn domain-specific experts, ModuleFormer can induce modularity from uncurated data with its new load balancing and concentration losses. ModuleFormer is a modular architecture that includes two different types of modules: new stick-breaking attention heads and feedforward experts. Different modules are sparsely activated conditions on the input token during training and inference. In our experiment, we found that the modular architecture enables three important abilities for large pre-trained language models: 1) Efficiency, since ModuleFormer only activates a subset of its modules for each input token, thus it could achieve the same performance as dense LLMs with more than two times throughput; 2) Extendability, ModuleFormer is more immune to catastrophic forgetting than dense LLMs and can be easily extended with new modules to learn new knowledge that is not included in the training data; 3) Specialisation, finetuning ModuleFormer could specialize a subset of modules to the finetuning task and the task-unrelated modules could be easily pruned for a lightweight deployment.2023: Yikang Shen, Zheyu Zhang, Tianyou Cao, Shawn Tan, Zhenfang Chen, Chuang Ganhttps://arxiv.org/pdf/2306.04640v2.pdf
6 days ago
6 days ago
Recent advances on large language models (LLMs) enable researchers and developers to build autonomous language agents that can automatically solve various tasks and interact with environments, humans, and other agents using natural language interfaces. We consider language agents as a promising direction towards artificial general intelligence and release Agents, an open-source library with the goal of opening up these advances to a wider non-specialist audience. Agents is carefully engineered to support important features including planning, memory, tool usage, multi-agent communication, and fine-grained symbolic control. Agents is user-friendly as it enables non-specialists to build, customize, test, tune, and deploy state-of-the-art autonomous language agents without much coding. The library is also research-friendly as its modularized design makes it easily extensible for researchers. Agents is available at https://github.com/aiwaves-cn/agents.2023: Wangchunshu Zhou, Yuchen Jiang, Long Li, Jialong Wu, Tiannan Wang, Shi Qiu, Jintian Zhang, Jing Chen, Ruipu Wu, Shuai Wang, Shiding Zhu, Jiyu Chen, Wentao Zhang, Ningyu Zhang, Huajun Chen, Peng Cui, Mrinmaya Sachanhttps://arxiv.org/pdf/2309.07870v1.pdf
Friday Sep 15, 2023
Cognitive Architectures for Language Agents
Friday Sep 15, 2023
Friday Sep 15, 2023
Recent efforts have incorporated large language models (LLMs) with external resources (e.g., the Internet) or internal control flows (e.g., prompt chaining) for tasks requiring grounding or reasoning. However, these efforts have largely been piecemeal, lacking a systematic framework for constructing a fully-fledged language agent. To address this challenge, we draw on the rich history of agent design in symbolic artificial intelligence to develop a blueprint for a new wave of cognitive language agents. We first show that LLMs have many of the same properties as production systems, and recent efforts to improve their grounding or reasoning mirror the development of cognitive architectures built around production systems. We then propose Cognitive Architectures for Language Agents (CoALA), a conceptual framework to systematize diverse methods for LLM-based reasoning, grounding, learning, and decision making as instantiations of language agents in the framework. Finally, we use the CoALA framework to highlight gaps and propose actionable directions toward more capable language agents in the future.2023: T. Sumers, Shunyu Yao, Karthik Narasimhan, Thomas L. Griffithshttps://arxiv.org/pdf/2309.02427v1.pdf
Thursday Sep 14, 2023
PyGraft: Configurable Generation of Schemas and Knowledge Graphs at Your Fingertips
Thursday Sep 14, 2023
Thursday Sep 14, 2023
Knowledge graphs (KGs) have emerged as a prominent data representation and management paradigm. Being usually underpinned by a schema (e.g. an ontology), KGs capture not only factual information but also contextual knowledge. In some tasks, a few KGs established themselves as standard benchmarks. However, recent works outline that relying on a limited collection of datasets is not sufficient to assess the generalization capability of an approach. In some data-sensitive fields such as education or medicine, access to public datasets is even more limited. To remedy the aforementioned issues, we release PyGraft, a Python-based tool that generates highly customized, domain-agnostic schemas and knowledge graphs. The synthesized schemas encompass various RDFS and OWL constructs, while the synthesized KGs emulate the characteristics and scale of real-world KGs. Logical consistency of the generated resources is ultimately ensured by running a description logic (DL) reasoner. By providing a way of generating both a schema and KG in a single pipeline, PyGraft's aim is to empower the generation of a more diverse array of KGs for benchmarking novel approaches in areas such as graph-based machine learning (ML), or more generally KG processing. In graph-based ML in particular, this should foster a more holistic evaluation of model performance and generalization capability, thereby going beyond the limited collection of available benchmarks. PyGraft is available at: https://github.com/nicolas-hbt/pygraft.2023: Nicolas Hubert, Pierre Monnin, Mathieu d'Aquin, Armelle Brun, D. Monticolohttps://arxiv.org/pdf/2309.03685v1.pdf
Wednesday Sep 13, 2023
Wednesday Sep 13, 2023
Autonomous agents empowered by Large Language Models (LLMs) have undergone significant improvements, enabling them to generalize across a broad spectrum of tasks. However, in real-world scenarios, cooperation among individuals is often required to enhance the efficiency and effectiveness of task accomplishment. Hence, inspired by human group dynamics, we propose a multi-agent framework \framework that can collaboratively and dynamically adjust its composition as a greater-than-the-sum-of-its-parts system. Our experiments demonstrate that \framework framework can effectively deploy multi-agent groups that outperform a single agent. Furthermore, we delve into the emergence of social behaviors among individual agents within a group during collaborative task accomplishment. In view of these behaviors, we discuss some possible strategies to leverage positive ones and mitigate negative ones for improving the collaborative potential of multi-agent groups. Our codes for \framework will soon be released at \url{https://github.com/OpenBMB/AgentVerse}.2023: Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Cheng Qian, Chi-Min Chan, Yujia Qin, Ya-Ting Lu, Ruobing Xie, Zhiyuan Liu, Maosong Sun, Jie Zhouhttps://arxiv.org/pdf/2308.10848v1.pdf
Monday Sep 11, 2023
Monday Sep 11, 2023
Retrieval-augmented in-context learning has emerged as a powerful approach for addressing knowledge-intensive tasks using frozen language models (LM) and retrieval models (RM). Existing work has combined these in simple"retrieve-then-read"pipelines in which the RM retrieves passages that are inserted into the LM prompt. To begin to fully realize the potential of frozen LMs and RMs, we propose Demonstrate-Search-Predict (DSP), a framework that relies on passing natural language texts in sophisticated pipelines between an LM and an RM. DSP can express high-level programs that bootstrap pipeline-aware demonstrations, search for relevant passages, and generate grounded predictions, systematically breaking down problems into small transformations that the LM and RM can handle more reliably. We have written novel DSP programs for answering questions in open-domain, multi-hop, and conversational settings, establishing in early evaluations new state-of-the-art in-context learning results and delivering 37-120%, 8-39%, and 80-290% relative gains against the vanilla LM (GPT-3.5), a standard retrieve-then-read pipeline, and a contemporaneous self-ask pipeline, respectively. We release DSP at https://github.com/stanfordnlp/dsp2022: O. Khattab, Keshav Santhanam, Xiang Lisa Li, David Leo Wright Hall, Percy Liang, Christopher Potts, M. Zahariahttps://arxiv.org/pdf/2212.14024v2.pdf