Depth is the hallmark of deep neural networks. But more depth means more sequential computation and higher latency. This begs the question – is it possible to build high-performing “non-deep” neural networks? We show that it is. To do so, we use parallel subnetworks instead of stacking one layer after another. This helps effectively reduce depth while maintaining high performance. 2021: Ankit Goyal, Alexey Bochkovskiy, Jia Deng, V. Koltun https://arxiv.org/pdf/2110.07641v1.pdf
Version: 20241125
Comments (0)
To leave or reply to comments, please download free Podbean or
No Comments
To leave or reply to comments,
please download free Podbean App.