Papers Read on AI
Keeping you up to date with the latest trends and best performing architectures in this fast evolving field in computer science. Selecting papers by comparative results, citations and influence we educate you on the latest research. Consider supporting us on Patreon.com/PapersRead for feedback and ideas.
Episodes
Friday Feb 23, 2024
Premise Order Matters in Reasoning with Large Language Models
Friday Feb 23, 2024
Friday Feb 23, 2024
Large language models (LLMs) have accomplished remarkable reasoning performance in various domains. However, in the domain of reasoning tasks, we discover a frailty: LLMs are surprisingly brittle to the ordering of the premises, despite the fact that such ordering does not alter the underlying task. In particular, we observe that LLMs achieve the best performance when the premise order aligns with the context required in intermediate reasoning steps. For example, in deductive reasoning tasks, presenting the premises in the same order as the ground truth proof in the prompt (as opposed to random ordering) drastically increases the model's accuracy. We first examine the effect of premise ordering on deductive reasoning on a variety of LLMs, and our evaluation shows that permuting the premise order can cause a performance drop of over 30%. In addition, we release the benchmark R-GSM, based on GSM8K, to examine the ordering effect for mathematical problem-solving, and we again observe a significant drop in accuracy, relative to the original GSM8K benchmark.2024: Xinyun Chen, Ryan A. Chi, Xuezhi Wang, Denny Zhouhttps://arxiv.org/pdf/2402.08939.pdf
Tuesday Feb 20, 2024
Generative Representational Instruction Tuning
Tuesday Feb 20, 2024
Tuesday Feb 20, 2024
All text-based language problems can be reduced to either generation or embedding. Current models only perform well at one or the other. We introduce generative representational instruction tuning (GRIT) whereby a large language model is trained to handle both generative and embedding tasks by distinguishing between them through instructions. Compared to other open models, our resulting GritLM 7B sets a new state of the art on the Massive Text Embedding Benchmark (MTEB) and outperforms all models up to its size on a range of generative tasks. By scaling up further, GritLM 8x7B outperforms all open generative language models that we tried while still being among the best embedding models. Notably, we find that GRIT matches training on only generative or embedding data, thus we can unify both at no performance loss. Among other benefits, the unification via GRIT speeds up Retrieval-Augmented Generation (RAG) by>60% for long documents, by no longer requiring separate retrieval and generation models. Models, code, etc. are freely available at https://github.com/ContextualAI/gritlm.2024: Niklas Muennighoff, Hongjin Su, Liang Wang, Nan Yang, Furu Wei, Tao Yu, Amanpreet Singh, Douwe Kielahttps://arxiv.org/pdf/2402.09906v1.pdf
Monday Feb 19, 2024
DoRA: Weight-Decomposed Low-Rank Adaptation
Monday Feb 19, 2024
Monday Feb 19, 2024
Among the widely used parameter-efficient finetuning (PEFT) methods, LoRA and its variants have gained considerable popularity because of avoiding additional inference costs. However, there still often exists an accuracy gap between these methods and full fine-tuning (FT). In this work, we first introduce a novel weight decomposition analysis to investigate the inherent differences between FT and LoRA. Aiming to resemble the learning capacity of FT from the findings, we propose Weight-Decomposed LowRank Adaptation (DoRA). DoRA decomposes the pre-trained weight into two components, magnitude and direction, for fine-tuning, specifically employing LoRA for directional updates to efficiently minimize the number of trainable parameters. By employing DoRA, we enhance both the learning capacity and training stability of LoRA while avoiding any additional inference overhead. DoRA consistently outperforms LoRA on fine-tuning LLaMA, LLaVA, and VL-BART on various downstream tasks, such as commonsense reasoning, visual instruction tuning, and image/video-text understanding.2024: Shih-yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting Cheng, Min-Hung Chenhttps://arxiv.org/pdf/2402.09353v1.pdf
Sunday Feb 18, 2024
Sunday Feb 18, 2024
The conventional recipe for maximizing model accuracy is to (1) train multiple models with various hyperparameters and (2) pick the individual model which performs best on a held-out validation set, discarding the remainder. In this paper, we revisit the second step of this procedure in the context of fine-tuning large pre-trained models, where fine-tuned models often appear to lie in a single low error basin. We show that averaging the weights of multiple models fine-tuned with different hyperparameter configurations often improves accuracy and robustness. Unlike a conventional ensemble, we may average many models without incurring any additional inference or memory costs -- we call the results"model soups."When fine-tuning large pre-trained models such as CLIP, ALIGN, and a ViT-G pre-trained on JFT, our soup recipe provides significant improvements over the best model in a hyperparameter sweep on ImageNet. The resulting ViT-G model, which attains 90.94% top-1 accuracy on ImageNet, achieved a new state of the art. Furthermore, we show that the model soup approach extends to multiple image classification and natural language processing tasks, improves out-of-distribution performance, and improves zero-shot performance on new downstream tasks. Finally, we analytically relate the performance similarity of weight-averaging and logit-ensembling to flatness of the loss and confidence of the predictions, and validate this relation empirically. Code is available at https://github.com/mlfoundations/model-soups.2022: Mitchell Wortsman, Gabriel Ilharco, S. Gadre, R. Roelofs, Raphael Gontijo-Lopes, Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Y. Carmon, Simon Kornblith, Ludwig Schmidthttps://arxiv.org/pdf/2203.05482.pdf
Saturday Feb 17, 2024
World Model on Million-Length Video And Language With RingAttention
Saturday Feb 17, 2024
Saturday Feb 17, 2024
Current language models fall short in understanding aspects of the world not easily described in words, and struggle with complex, long-form tasks. Video sequences offer valuable temporal information absent in language and static images, making them attractive for joint modeling with language. Such models could develop a understanding of both human textual knowledge and the physical world, enabling broader AI capabilities for assisting humans. However, learning from millions of tokens of video and language sequences poses challenges due to memory constraints, computational complexity, and limited datasets. To address these challenges, we curate a large dataset of diverse videos and books, utilize the RingAttention technique to scalably train on long sequences, and gradually increase context size from 4K to 1M tokens. This paper makes the following contributions: (a) Largest context size neural network: We train one of the largest context size transformers on long video and language sequences, setting new benchmarks in difficult retrieval tasks and long video understanding. (b) Solutions for overcoming vision-language training challenges, including using masked sequence packing for mixing different sequence lengths, loss weighting to balance language and vision, and model-generated QA dataset for long sequence chat. (c) A highly-optimized implementation with RingAttention, masked sequence packing, and other key features for training on millions-length multimodal sequences. (d) Fully open-sourced a family of 7B parameter models capable of processing long text documents (LWM-Text, LWM-Text-Chat) and videos (LWM, LWM-Chat) of over 1M tokens. This work paves the way for training on massive datasets of long video and language to develop understanding of both human knowledge and the multimodal world, and broader capabilities.2024: Hao Liu, Wilson Yan, Matei Zaharia, Pieter Abbeelhttps://arxiv.org/pdf/2402.08268.pdf
Friday Feb 16, 2024
Friday Feb 16, 2024
Harnessing the power of human-annotated data through Supervised Fine-Tuning (SFT) is pivotal for advancing Large Language Models (LLMs). In this paper, we delve into the prospect of growing a strong LLM out of a weak one without the need for acquiring additional human-annotated data. We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN), which starts from a supervised fine-tuned model. At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself. More specifically, the LLM generates its own training data from its previous iterations, refining its policy by discerning these self-generated responses from those obtained from human-annotated data. Our method progressively elevates the LLM from a nascent model to a formidable one, unlocking the full potential of human-annotated demonstration data for SFT. Theoretically, we prove that the global optimum to the training objective function of our method is achieved only when the LLM policy aligns with the target data distribution. Empirically, we evaluate our method on several benchmark datasets including the HuggingFace Open LLM Leaderboard, MT-Bench, and datasets from Big-Bench. Our results show that SPIN can significantly improve the LLM's performance across a variety of benchmarks and even outperform models trained through direct preference optimization (DPO) supplemented with extra GPT-4 preference data. This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents. Codes are available at https://github.com/uclaml/SPIN.2024: Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, Quanquan Guhttps://arxiv.org/pdf/2401.01335v2.pdf
Thursday Feb 15, 2024
Fractal Patterns May Unravel the Intelligence in Next-Token Prediction
Thursday Feb 15, 2024
Thursday Feb 15, 2024
We study the fractal structure of language, aiming to provide a precise formalism for quantifying properties that may have been previously suspected but not formally shown. We establish that language is: (1) self-similar, exhibiting complexities at all levels of granularity, with no particular characteristic context length, and (2) long-range dependent (LRD), with a Hurst parameter of approximately H=0.70. Based on these findings, we argue that short-term patterns/dependencies in language, such as in paragraphs, mirror the patterns/dependencies over larger scopes, like entire documents. This may shed some light on how next-token prediction can lead to a comprehension of the structure of text at multiple levels of granularity, from words and clauses to broader contexts and intents. We also demonstrate that fractal parameters improve upon perplexity-based bits-per-byte (BPB) in predicting downstream performance. We hope these findings offer a fresh perspective on language and the mechanisms underlying the success of LLMs.2024: Ibrahim M. Alabdulmohsin, Vinh Q. Tran, Mostafa Dehghanihttps://arxiv.org/pdf/2402.01825.pdf
Tuesday Feb 13, 2024
Precise Zero-Shot Dense Retrieval without Relevance Labels
Tuesday Feb 13, 2024
Tuesday Feb 13, 2024
While dense retrieval has been shown to be effective and efficient across tasks and languages, it remains difficult to create effective fully zero-shot dense retrieval systems when no relevance labels are available. In this paper, we recognize the difficulty of zero-shot learning and encoding relevance. Instead, we propose to pivot through Hypothetical Document Embeddings (HyDE). Given a query, HyDE first zero-shot prompts an instruction-following language model (e.g., InstructGPT) to generate a hypothetical document. The document captures relevance patterns but is “fake” and may contain hallucinations. Then, an unsupervised contrastively learned encoder (e.g., Contriever) encodes the document into an embedding vector. This vector identifies a neighborhood in the corpus embedding space, from which similar real documents are retrieved based on vector similarity. This second step grounds the generated document to the actual corpus, with the encoder’s dense bottleneck filtering out the hallucinations. Our experiments show that HyDE significantly outperforms the state-of-the-art unsupervised dense retriever Contriever and shows strong performance comparable to fine-tuned retrievers across various tasks (e.g. web search, QA, fact verification) and in non-English languages (e.g., sw, ko, ja, bn).2022: Luyu Gao, Xueguang Ma, Jimmy J. Lin, Jamie Callanhttps://arxiv.org/pdf/2212.10496.pdf