Papers Read on AI
Keeping you up to date with the latest trends and best performing architectures in this fast evolving field in computer science. Selecting papers by comparative results, citations and influence we educate you on the latest research. Consider supporting us on Patreon.com/PapersRead for feedback and ideas.
Episodes
Friday Jan 05, 2024
AnyText: Multilingual Visual Text Generation And Editing
Friday Jan 05, 2024
Friday Jan 05, 2024
Diffusion model based Text-to-Image has achieved impressive achievements recently. Although current technology for synthesizing images is highly advanced and capable of generating images with high fidelity, it is still possible to give the show away when focusing on the text area in the generated image. To address this issue, we introduce AnyText, a diffusion-based multilingual visual text generation and editing model, that focuses on rendering accurate and coherent text in the image. AnyText comprises a diffusion pipeline with two primary elements: an auxiliary latent module and a text embedding module. The former uses inputs like text glyph, position, and masked image to generate latent features for text generation or editing. The latter employs an OCR model for encoding stroke data as embeddings, which blend with image caption embeddings from the tokenizer to generate texts that seamlessly integrate with the background. We employed text-control diffusion loss and text perceptual loss for training to further enhance writing accuracy. AnyText can write characters in multiple languages, to the best of our knowledge, this is the first work to address multilingual visual text generation. It is worth mentioning that AnyText can be plugged into existing diffusion models from the community for rendering or editing text accurately. After conducting extensive evaluation experiments, our method has outperformed all other approaches by a significant margin. Additionally, we contribute the first large-scale multilingual text images dataset, AnyWord-3M, containing 3 million image-text pairs with OCR annotations in multiple languages. Based on AnyWord-3M dataset, we propose AnyText-benchmark for the evaluation of visual text generation accuracy and quality. Our project will be open-sourced on https://github.com/tyxsspa/AnyText to improve and promote the development of text generation technology.2023: Yuxiang Tuo, Wangmeng Xiang, Jun-Yan He, Yifeng Geng, Xuansong Xiehttps://arxiv.org/pdf/2311.03054v4.pdf
Thursday Jan 04, 2024
KwaiAgents: Generalized Information-seeking Agent System with Large Language Models
Thursday Jan 04, 2024
Thursday Jan 04, 2024
Driven by curiosity, humans have continually sought to explore and understand the world around them, leading to the invention of various tools to satiate this inquisitiveness. Despite not having the capacity to process and memorize vast amounts of information in their brains, humans excel in critical thinking, planning, reflection, and harnessing available tools to interact with and interpret the world, enabling them to find answers efficiently. The recent advancements in large language models (LLMs) suggest that machines might also possess the aforementioned human-like capabilities, allowing them to exhibit powerful abilities even with a constrained parameter count. In this paper, we introduce KwaiAgents, a generalized information-seeking agent system based on LLMs. Within KwaiAgents, we propose an agent system that employs LLMs as its cognitive core, which is capable of understanding a user's query, behavior guidelines, and referencing external documents. The agent can also update and retrieve information from its internal memory, plan and execute actions using a time-aware search-browse toolkit, and ultimately provide a comprehensive response. We further investigate the system's performance when powered by LLMs less advanced than GPT-4, and introduce the Meta-Agent Tuning (MAT) framework, designed to ensure even an open-sourced 7B or 13B model performs well among many agent systems. We exploit both benchmark and human evaluations to systematically validate these capabilities. Extensive experiments show the superiority of our agent system compared to other autonomous agents and highlight the enhanced generalized agent-abilities of our fine-tuned LLMs.2023: Haojie Pan, Zepeng Zhai, Hao Yuan, Yaojia Lv, Ruiji Fu, Ming Liu, Zhongyuan Wang, Bing Qinhttps://arxiv.org/pdf/2312.04889v1.pdf
Wednesday Jan 03, 2024
Principled Instructions Are All You Need for Questioning LLaMA-1/2, GPT-3.5/4
Wednesday Jan 03, 2024
Wednesday Jan 03, 2024
This paper introduces 26 guiding principles designed to streamline the process of querying and prompting large language models. Our goal is to simplify the underlying concepts of formulating questions for various scales of large language models, examining their abilities, and enhancing user comprehension on the behaviors of different scales of large language models when feeding into different prompts. Extensive experiments are conducted on LLaMA-1/2 (7B, 13B and 70B), GPT-3.5/4 to verify the effectiveness of the proposed principles on instructions and prompts design. We hope that this work provides a better guide for researchers working on the prompting of large language models. Project page is available at https://github.com/VILA-Lab/ATLAS.2023: S. Bsharat, Aidar Myrzakhan, Zhiqiang Shenhttps://arxiv.org/pdf/2312.16171v1.pdf
Tuesday Jan 02, 2024
Fast Inference of Mixture-of-Experts Language Models with Offloading
Tuesday Jan 02, 2024
Tuesday Jan 02, 2024
With the widespread adoption of Large Language Models (LLMs), many deep learning practitioners are looking for strategies of running these models more efficiently. One such strategy is to use sparse Mixture-of-Experts (MoE) - a type of model architectures where only a fraction of model layers are active for any given input. This property allows MoE-based language models to generate tokens faster than their dense counterparts, but it also increases model size due to having multiple experts. Unfortunately, this makes state-of-the-art MoE language models difficult to run without high-end GPUs. In this work, we study the problem of running large MoE language models on consumer hardware with limited accelerator memory. We build upon parameter offloading algorithms and propose a novel strategy that accelerates offloading by taking advantage of innate properties of MoE LLMs. Using this strategy, we build can run Mixtral-8x7B with mixed quantization on desktop hardware and free-tier Google Colab instances.2023: Artyom Eliseev, Denis Mazurhttps://arxiv.org/pdf/2312.17238v1.pdf
Friday Dec 29, 2023
Retrieval-Augmented Generation for Large Language Models: A Survey
Friday Dec 29, 2023
Friday Dec 29, 2023
Large language models (LLMs) demonstrate powerful capabilities, but they still face challenges in practical applications, such as hallucinations, slow knowledge updates, and lack of transparency in answers. Retrieval-Augmented Generation (RAG) refers to the retrieval of relevant information from external knowledge bases before answering questions with LLMs. RAG has been demonstrated to significantly enhance answer accuracy, reduce model hallucination, particularly for knowledge-intensive tasks. By citing sources, users can verify the accuracy of answers and increase trust in model outputs. It also facilitates knowledge updates and the introduction of domain-specific knowledge. RAG effectively combines the parameterized knowledge of LLMs with non-parameterized external knowledge bases, making it one of the most important methods for implementing large language models. This paper outlines the development paradigms of RAG in the era of LLMs, summarizing three paradigms: Naive RAG, Advanced RAG, and Modular RAG. It then provides a summary and organization of the three main components of RAG: retriever, generator, and augmentation methods, along with key technologies in each component. Furthermore, it discusses how to evaluate the effectiveness of RAG models, introducing two evaluation methods for RAG, emphasizing key metrics and abilities for evaluation, and presenting the latest automatic evaluation framework. Finally, potential future research directions are introduced from three aspects: vertical optimization, horizontal scalability, and the technical stack and ecosystem of RAG.2023: Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Haofen Wanghttps://arxiv.org/pdf/2312.10997v1.pdf
Thursday Dec 28, 2023
PowerInfer: Fast Large Language Model Serving with a Consumer-grade GPU
Thursday Dec 28, 2023
Thursday Dec 28, 2023
This paper introduces PowerInfer, a high-speed Large Language Model (LLM) inference engine on a personal computer (PC) equipped with a single consumer-grade GPU. The key underlying the design of PowerInfer is exploiting the high locality inherent in LLM inference, characterized by a power-law distribution in neuron activation. This distribution indicates that a small subset of neurons, termed hot neurons, are consistently activated across inputs, while the majority, cold neurons, vary based on specific inputs. PowerInfer exploits such an insight to design a GPU-CPU hybrid inference engine: hot-activated neurons are preloaded onto the GPU for fast access, while cold-activated neurons are computed on the CPU, thus significantly reducing GPU memory demands and CPU-GPU data transfers. PowerInfer further integrates adaptive predictors and neuron-aware sparse operators, optimizing the efficiency of neuron activation and computational sparsity. Evaluation shows that PowerInfer attains an average token generation rate of 13.20 tokens/s, with a peak of 29.08 tokens/s, across various LLMs (including OPT-175B) on a single NVIDIA RTX 4090 GPU, only 18% lower than that achieved by a top-tier server-grade A100 GPU. This significantly outperforms llama.cpp by up to 11.69x while retaining model accuracy.2023: Yixin Song, Zeyu Mi, Haotong Xie, Haibo Chenhttps://arxiv.org/pdf/2312.12456v1.pdf
Tuesday Dec 19, 2023
Pearl: A Production-ready Reinforcement Learning Agent
Tuesday Dec 19, 2023
Tuesday Dec 19, 2023
Reinforcement Learning (RL) offers a versatile framework for achieving long-term goals. Its generality allows us to formalize a wide range of problems that real-world intelligent systems encounter, such as dealing with delayed rewards, handling partial observability, addressing the exploration and exploitation dilemma, utilizing offline data to improve online performance, and ensuring safety constraints are met. Despite considerable progress made by the RL research community in addressing these issues, existing open-source RL libraries tend to focus on a narrow portion of the RL solution pipeline, leaving other aspects largely unattended. This paper introduces Pearl, a Production-ready RL agent software package explicitly designed to embrace these challenges in a modular fashion. In addition to presenting preliminary benchmark results, this paper highlights Pearl's industry adoptions to demonstrate its readiness for production usage. Pearl is open sourced on Github at github.com/facebookresearch/pearl and its official website is located at pearlagent.github.io.2023: Zheqing Zhu, Rodrigo de Salvo Braz, Jalaj Bhandari, Daniel Jiang, Yi Wan, Yonathan Efroni, Liyuan Wang, Ruiyang Xu, Hongbo Guo, Alex Nikulkov, D. Korenkevych, Urun Dogan, Frank Cheng, Zheng Wu, Wanqiao Xuhttps://arxiv.org/pdf/2312.03814v1.pdf
Sunday Dec 17, 2023
Are Emergent Abilities in Large Language Models just In-Context Learning?
Sunday Dec 17, 2023
Sunday Dec 17, 2023
Large language models have exhibited emergent abilities, demonstrating exceptional performance across diverse tasks for which they were not explicitly trained, including those that require complex reasoning abilities. The emergence of such abilities carries profound implications for the future direction of research in NLP, especially as the deployment of such models becomes more prevalent. However, one key challenge is that the evaluation of these abilities is often confounded by competencies that arise in models through alternative prompting techniques, such as in-context learning and instruction following, which also emerge as the models are scaled up. In this study, we provide the first comprehensive examination of these emergent abilities while accounting for various potentially biasing factors that can influence the evaluation of models. We conduct rigorous tests on a set of 18 models, encompassing a parameter range from 60 million to 175 billion parameters, across a comprehensive set of 22 tasks. Through an extensive series of over 1,000 experiments, we provide compelling evidence that emergent abilities can primarily be ascribed to in-context learning. We find no evidence for the emergence of reasoning abilities, thus providing valuable insights into the underlying mechanisms driving the observed abilities and thus alleviating safety concerns regarding their use.2023: Sheng Lu, Irina Bigoulaeva, Rachneet Sachdeva, Harish Tayyar Madabushi, Iryna Gurevychhttps://arxiv.org/pdf/2309.01809.pdf