Papers Read on AI
Keeping you up to date with the latest trends and best performing architectures in this fast evolving field in computer science. Selecting papers by comparative results, citations and influence we educate you on the latest research. Consider supporting us on Patreon.com/PapersRead for feedback and ideas.
Episodes
Monday Sep 23, 2024
Monday Sep 23, 2024
In many modern LLM applications, such as retrieval augmented generation, prompts have become programs themselves. In these settings, prompt programs are repeatedly called with different user queries or data instances. A big practical challenge is optimizing such prompt programs. Recent work has mostly focused on either simple prompt programs or assumed that the general structure of a prompt program is fixed. We introduce SAMMO, a framework to perform symbolic prompt program search for compile-time optimizations of prompt programs. SAMMO represents prompt programs on a symbolic level which allows for a rich set of transformations that can be searched over during optimization. We show that SAMMO generalizes previous methods and improves the performance of complex prompts on (1) instruction tuning, (2) RAG pipeline tuning, and (3) prompt compression, across several different LLMs. We make all code available open-source at https://github.com/microsoft/sammo .2024: Tobias Schnabel, Jennifer Nevillehttps://arxiv.org/pdf/2404.02319v2
Sunday Sep 22, 2024
PuLID: Pure and Lightning ID Customization via Contrastive Alignment
Sunday Sep 22, 2024
Sunday Sep 22, 2024
We propose Pure and Lightning ID customization (PuLID), a novel tuning-free ID customization method for text-to-image generation. By incorporating a Lightning T2I branch with a standard diffusion one, PuLID introduces both contrastive alignment loss and accurate ID loss, minimizing disruption to the original model and ensuring high ID fidelity. Experiments show that PuLID achieves superior performance in both ID fidelity and editability. Another attractive property of PuLID is that the image elements (e.g., background, lighting, composition, and style) before and after the ID insertion are kept as consistent as possible. Codes and models will be available at https://github.com/ToTheBeginning/PuLID2024: Zinan Guo, Yanze Wu, Zhuowei Chen, Lang Chen, Qian Hehttps://arxiv.org/pdf/2404.16022v1
Saturday Sep 21, 2024
MemoRAG: Moving towards Next-Gen RAG Via Memory-Inspired Knowledge Discovery
Saturday Sep 21, 2024
Saturday Sep 21, 2024
Retrieval-Augmented Generation (RAG) leverages retrieval tools to access external databases, thereby enhancing the generation quality of large language models (LLMs) through optimized context. However, the existing retrieval methods are constrained inherently, as they can only perform relevance matching between explicitly stated queries and well-formed knowledge, but unable to handle tasks involving ambiguous information needs or unstructured knowledge. Consequently, existing RAG systems are primarily effective for straightforward question-answering tasks. In this work, we propose MemoRAG, a novel retrieval-augmented generation paradigm empowered by long-term memory. MemoRAG adopts a dual-system architecture. On the one hand, it employs a light but long-range LLM to form the global memory of database. Once a task is presented, it generates draft answers, cluing the retrieval tools to locate useful information within the database. On the other hand, it leverages an expensive but expressive LLM, which generates the ultimate answer based on the retrieved information. Building on this general framework, we further optimize MemoRAG's performance by enhancing its cluing mechanism and memorization capacity. In our experiment, MemoRAG achieves superior performance across a variety of evaluation tasks, including both complex ones where conventional RAG fails and straightforward ones where RAG is commonly applied.2024: Hongjin Qian, Peitian Zhang, Zheng Liu, Kelong Mao, Zhicheng Douhttps://arxiv.org/pdf/2409.05591v2
Friday Sep 20, 2024
PuLID: Pure and Lightning ID Customization via Contrastive Alignment
Friday Sep 20, 2024
Friday Sep 20, 2024
We propose Pure and Lightning ID customization (PuLID), a novel tuning-free ID customization method for text-to-image generation. By incorporating a Lightning T2I branch with a standard diffusion one, PuLID introduces both contrastive alignment loss and accurate ID loss, minimizing disruption to the original model and ensuring high ID fidelity. Experiments show that PuLID achieves superior performance in both ID fidelity and editability. Another attractive property of PuLID is that the image elements (e.g., background, lighting, composition, and style) before and after the ID insertion are kept as consistent as possible. Codes and models will be available at https://github.com/ToTheBeginning/PuLID2024: Zinan Guo, Yanze Wu, Zhuowei Chen, Lang Chen, Qian Hehttps://arxiv.org/pdf/2404.16022v1
Thursday Sep 19, 2024
Mini-Omni: Language Models Can Hear, Talk While Thinking in Streaming
Thursday Sep 19, 2024
Thursday Sep 19, 2024
Recent advances in language models have achieved significant progress. GPT-4o, as a new milestone, has enabled real-time conversations with humans, demonstrating near-human natural fluency. Such human-computer interaction necessitates models with the capability to perform reasoning directly with the audio modality and generate output in streaming. However, this remains beyond the reach of current academic models, as they typically depend on extra TTS systems for speech synthesis, resulting in undesirable latency. This paper introduces the Mini-Omni, an audio-based end-to-end conversational model, capable of real-time speech interaction. To achieve this capability, we propose a text-instructed speech generation method, along with batch-parallel strategies during inference to further boost the performance. Our method also helps to retain the original model's language capabilities with minimal degradation, enabling other works to establish real-time interaction capabilities. We call this training method"Any Model Can Talk". We also introduce the VoiceAssistant-400K dataset to fine-tune models optimized for speech output. To our best knowledge, Mini-Omni is the first fully end-to-end, open-source model for real-time speech interaction, offering valuable potential for future research.2024: Zhifei Xie, Changqiao Wuhttps://arxiv.org/pdf/2408.16725v2
Wednesday Sep 18, 2024
LLaMA-Omni: Seamless Speech Interaction with Large Language Models
Wednesday Sep 18, 2024
Wednesday Sep 18, 2024
Models like GPT-4o enable real-time interaction with large language models (LLMs) through speech, significantly enhancing user experience compared to traditional text-based interaction. However, there is still a lack of exploration on how to build speech interaction models based on open-source LLMs. To address this, we propose LLaMA-Omni, a novel model architecture designed for low-latency and high-quality speech interaction with LLMs. LLaMA-Omni integrates a pretrained speech encoder, a speech adaptor, an LLM, and a streaming speech decoder. It eliminates the need for speech transcription, and can simultaneously generate text and speech responses directly from speech instructions with extremely low latency. We build our model based on the latest Llama-3.1-8B-Instruct model. To align the model with speech interaction scenarios, we construct a dataset named InstructS2S-200K, which includes 200K speech instructions and corresponding speech responses. Experimental results show that compared to previous speech-language models, LLaMA-Omni provides better responses in both content and style, with a response latency as low as 226ms. Additionally, training LLaMA-Omni takes less than 3 days on just 4 GPUs, paving the way for the efficient development of speech-language models in the future.2024: Qingkai Fang, Shoutao Guo, Yan Zhou, Zhengrui Ma, Shaolei Zhang, Yang Fenghttps://arxiv.org/pdf/2409.06666v1
Tuesday Sep 17, 2024
GeoCalib: Learning Single-image Calibration with Geometric Optimization
Tuesday Sep 17, 2024
Tuesday Sep 17, 2024
From a single image, visual cues can help deduce intrinsic and extrinsic camera parameters like the focal length and the gravity direction. This single-image calibration can benefit various downstream applications like image editing and 3D mapping. Current approaches to this problem are based on either classical geometry with lines and vanishing points or on deep neural networks trained end-to-end. The learned approaches are more robust but struggle to generalize to new environments and are less accurate than their classical counterparts. We hypothesize that they lack the constraints that 3D geometry provides. In this work, we introduce GeoCalib, a deep neural network that leverages universal rules of 3D geometry through an optimization process. GeoCalib is trained end-to-end to estimate camera parameters and learns to find useful visual cues from the data. Experiments on various benchmarks show that GeoCalib is more robust and more accurate than existing classical and learned approaches. Its internal optimization estimates uncertainties, which help flag failure cases and benefit downstream applications like visual localization. The code and trained models are publicly available at https://github.com/cvg/GeoCalib.2024: Alexander Veicht, Paul-Edouard Sarlin, Philipp Lindenberger, Marc Pollefeyshttps://arxiv.org/pdf/2409.06704v1
Friday Sep 13, 2024
Friday Sep 13, 2024
Insect production for food and feed presents a promising supplement to ensure food safety and address the adverse impacts of agriculture on climate and environment in the future. However, optimisation is required for insect production to realise its full potential. This can be by targeted improvement of traits of interest through selective breeding, an approach which has so far been underexplored and underutilised in insect farming. Here we present a comprehensive review of the selective breeding framework in the context of insect production. We systematically evaluate adjustments of selective breeding techniques to the realm of insects and highlight the essential components integral to the breeding process. The discussion covers every step of a conventional breeding scheme, such as formulation of breeding objectives, phenotyping, estimation of genetic parameters and breeding values, selection of appropriate breeding strategies, and mitigation of issues associated with genetic diversity depletion and inbreeding. This review combines knowledge from diverse disciplines, bridging the gap between animal breeding, quantitative genetics, evolutionary biology, and entomology, offering an integrated view of the insect breeding research area and uniting knowledge which has previously remained scattered across diverse fields of expertise.2024: Min Ren, Yunlong Wang, Yuhao Zhu, Yongzhen Huang, Zhen Sun, Qi Li, Tieniu Tanhttps://arxiv.org/pdf/2406.18144