Papers Read on AI
Keeping you up to date with the latest trends and best performing architectures in this fast evolving field in computer science. Selecting papers by comparative results, citations and influence we educate you on the latest research. Consider supporting us on Patreon.com/PapersRead for feedback and ideas.
Episodes
Tuesday Aug 13, 2024
AnyTool: Self-Reflective, Hierarchical Agents for Large-Scale API Calls
Tuesday Aug 13, 2024
Tuesday Aug 13, 2024
We introduce AnyTool, a large language model agent designed to revolutionize the utilization of a vast array of tools in addressing user queries. We utilize over 16,000 APIs from Rapid API, operating under the assumption that a subset of these APIs could potentially resolve the queries. AnyTool primarily incorporates three elements: an API retriever with a hierarchical structure, a solver aimed at resolving user queries using a selected set of API candidates, and a self-reflection mechanism, which re-activates AnyTool if the initial solution proves impracticable. AnyTool is powered by the function calling feature of GPT-4, eliminating the need for training external modules. We also revisit the evaluation protocol introduced by previous works and identify a limitation in this protocol that leads to an artificially high pass rate. By revising the evaluation protocol to better reflect practical application scenarios, we introduce an additional benchmark, termed AnyToolBench. Experiments across various datasets demonstrate the superiority of our AnyTool over strong baselines such as ToolLLM and a GPT-4 variant tailored for tool utilization. For instance, AnyTool outperforms ToolLLM by +35.4% in terms of average pass rate on ToolBench. Code will be available at https://github.com/dyabel/AnyTool.2024: Yu Du, Fangyun Wei, Hongyang Zhanghttps://arxiv.org/pdf/2402.04253
Friday Aug 09, 2024
Friday Aug 09, 2024
Large Language Models (LLMs) employ auto-regressive decoding that requires sequential computation, with each step reliant on the previous one's output. This creates a bottleneck as each step necessitates moving the full model parameters from High-Bandwidth Memory (HBM) to the accelerator's cache. While methods such as speculative decoding have been suggested to address this issue, their implementation is impeded by the challenges associated with acquiring and maintaining a separate draft model. In this paper, we present Medusa, an efficient method that augments LLM inference by adding extra decoding heads to predict multiple subsequent tokens in parallel. Using a tree-based attention mechanism, Medusa constructs multiple candidate continuations and verifies them simultaneously in each decoding step. By leveraging parallel processing, Medusa substantially reduces the number of decoding steps required. We present two levels of fine-tuning procedures for Medusa to meet the needs of different use cases: Medusa-1: Medusa is directly fine-tuned on top of a frozen backbone LLM, enabling lossless inference acceleration. Medusa-2: Medusa is fine-tuned together with the backbone LLM, enabling better prediction accuracy of Medusa heads and higher speedup but needing a special training recipe that preserves the backbone model's capabilities. Moreover, we propose several extensions that improve or expand the utility of Medusa, including a self-distillation to handle situations where no training data is available and a typical acceptance scheme to boost the acceptance rate while maintaining generation quality. We evaluate Medusa on models of various sizes and training procedures. Our experiments demonstrate that Medusa-1 can achieve over 2.2x speedup without compromising generation quality, while Medusa-2 further improves the speedup to 2.3-3.6x.2024: Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D. Lee, De-huai Chen, Tri Daohttps://arxiv.org/pdf/2401.10774
Thursday Aug 08, 2024
LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
Thursday Aug 08, 2024
Thursday Aug 08, 2024
Large decoder-only language models (LLMs) are the state-of-the-art models on most of today's NLP tasks and benchmarks. Yet, the community is only slowly adopting these models for text embedding tasks, which require rich contextualized representations. In this work, we introduce LLM2Vec, a simple unsupervised approach that can transform any decoder-only LLM into a strong text encoder. LLM2Vec consists of three simple steps: 1) enabling bidirectional attention, 2) masked next token prediction, and 3) unsupervised contrastive learning. We demonstrate the effectiveness of LLM2Vec by applying it to 3 popular LLMs ranging from 1.3B to 7B parameters and evaluate the transformed models on English word- and sequence-level tasks. We outperform encoder-only models by a large margin on word-level tasks and reach a new unsupervised state-of-the-art performance on the Massive Text Embeddings Benchmark (MTEB). Moreover, when combining LLM2Vec with supervised contrastive learning, we achieve state-of-the-art performance on MTEB among models that train only on publicly available data. Our strong empirical results and extensive analysis demonstrate that LLMs can be effectively transformed into universal text encoders in a parameter-efficient manner without the need for expensive adaptation or synthetic GPT-4 generated data.2024: Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapados, Siva Reddyhttps://arxiv.org/pdf/2404.05961
Wednesday Aug 07, 2024
CogVideo: Large-scale Pretraining for Text-to-Video Generation via Transformers
Wednesday Aug 07, 2024
Wednesday Aug 07, 2024
Large-scale pretrained transformers have created milestones in text (GPT-3) and text-to-image (DALL-E and CogView) generation. Its application to video generation is still facing many challenges: The potential huge computation cost makes the training from scratch unaffordable; The scarcity and weak relevance of text-video datasets hinder the model understanding complex movement semantics. In this work, we present 9B-parameter transformer CogVideo, trained by inheriting a pretrained text-to-image model, CogView2. We also propose multi-frame-rate hierarchical training strategy to better align text and video clips. As (probably) the first open-source large-scale pretrained text-to-video model, CogVideo outperforms all publicly available models at a large margin in machine and human evaluations.2022: Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, Jie Tanghttps://arxiv.org/pdf/2205.15868
Monday Aug 05, 2024
MindSearch: Mimicking Human Minds Elicits Deep AI Searcher
Monday Aug 05, 2024
Monday Aug 05, 2024
Information seeking and integration is a complex cognitive task that consumes enormous time and effort. Inspired by the remarkable progress of Large Language Models, recent works attempt to solve this task by combining LLMs and search engines. However, these methods still obtain unsatisfying performance due to three challenges: (1) complex requests often cannot be accurately and completely retrieved by the search engine once (2) corresponding information to be integrated is spread over multiple web pages along with massive noise, and (3) a large number of web pages with long contents may quickly exceed the maximum context length of LLMs. Inspired by the cognitive process when humans solve these problems, we introduce MindSearch to mimic the human minds in web information seeking and integration, which can be instantiated by a simple yet effective LLM-based multi-agent framework. The WebPlanner models the human mind of multi-step information seeking as a dynamic graph construction process: it decomposes the user query into atomic sub-questions as nodes in the graph and progressively extends the graph based on the search result from WebSearcher. Tasked with each sub-question, WebSearcher performs hierarchical information retrieval with search engines and collects valuable information for WebPlanner. The multi-agent design of MindSearch enables the whole framework to seek and integrate information parallelly from larger-scale (e.g., more than 300) web pages in 3 minutes, which is worth 3 hours of human effort. MindSearch demonstrates significant improvement in the response quality in terms of depth and breadth, on both close-set and open-set QA problems. Besides, responses from MindSearch based on InternLM2.5-7B are preferable by humans to ChatGPT-Web and Perplexity.ai applications, which implies that MindSearch can already deliver a competitive solution to the proprietary AI search engine.2024: Zehui Chen, Kuikun Liu, Qiuchen Wang, Jiangning Liu, Wenwei Zhang, Kai Chen, Feng Zhaohttps://arxiv.org/pdf/2407.20183v1
Wednesday Jul 31, 2024
Cinemo: Consistent and Controllable Image Animation with Motion Diffusion Models
Wednesday Jul 31, 2024
Wednesday Jul 31, 2024
Diffusion models have achieved great progress in image animation due to powerful generative capabilities. However, maintaining spatio-temporal consistency with detailed information from the input static image over time (e.g., style, background, and object of the input static image) and ensuring smoothness in animated video narratives guided by textual prompts still remains challenging. In this paper, we introduce Cinemo, a novel image animation approach towards achieving better motion controllability, as well as stronger temporal consistency and smoothness. In general, we propose three effective strategies at the training and inference stages of Cinemo to accomplish our goal. At the training stage, Cinemo focuses on learning the distribution of motion residuals, rather than directly predicting subsequent via a motion diffusion model. Additionally, a structural similarity index-based strategy is proposed to enable Cinemo to have better controllability of motion intensity. At the inference stage, a noise refinement technique based on discrete cosine transformation is introduced to mitigate sudden motion changes. Such three strategies enable Cinemo to produce highly consistent, smooth, and motion-controllable results. Compared to previous methods, Cinemo offers simpler and more precise user controllability. Extensive experiments against several state-of-the-art methods, including both commercial tools and research approaches, across multiple metrics, demonstrate the effectiveness and superiority of our proposed approach.2024: Xin Ma, Yaohui Wang, Gengyun Jia, Xinyuan Chen, Yuan-Fang Li, Cunjian Chen, Yu Qiaohttps://arxiv.org/pdf/2407.15642v2
Tuesday Jul 30, 2024
FinanceBench: A New Benchmark for Financial Question Answering
Tuesday Jul 30, 2024
Tuesday Jul 30, 2024
FinanceBench is a first-of-its-kind test suite for evaluating the performance of LLMs on open book financial question answering (QA). It comprises 10,231 questions about publicly traded companies, with corresponding answers and evidence strings. The questions in FinanceBench are ecologically valid and cover a diverse set of scenarios. They are intended to be clear-cut and straightforward to answer to serve as a minimum performance standard. We test 16 state of the art model configurations (including GPT-4-Turbo, Llama2 and Claude2, with vector stores and long context prompts) on a sample of 150 cases from FinanceBench, and manually review their answers (n=2,400). The cases are available open-source. We show that existing LLMs have clear limitations for financial QA. Notably, GPT-4-Turbo used with a retrieval system incorrectly answered or refused to answer 81% of questions. While augmentation techniques such as using longer context window to feed in relevant evidence improve performance, they are unrealistic for enterprise settings due to increased latency and cannot support larger financial documents. We find that all models examined exhibit weaknesses, such as hallucinations, that limit their suitability for use by enterprises.2023: Pranab Islam, Anand Kannappan, Douwe Kiela, Rebecca Qian, Nino Scherrer, Bertie Vidgenhttps://arxiv.org/pdf/2311.11944v1
Monday Jul 29, 2024
Stable-Hair: Real-World Hair Transfer via Diffusion Model
Monday Jul 29, 2024
Monday Jul 29, 2024
Current hair transfer methods struggle to handle diverse and intricate hairstyles, thus limiting their applicability in real-world scenarios. In this paper, we propose a novel diffusion-based hair transfer framework, named \textit{Stable-Hair}, which robustly transfers a wide range of real-world hairstyles onto user-provided faces for virtual hair try-on. To achieve this goal, our Stable-Hair framework is designed as a two-stage pipeline. In the first stage, we train a Bald Converter alongside stable diffusion to remove hair from the user-provided face images, resulting in bald images. In the second stage, we specifically designed three modules: a Hair Extractor, a Latent IdentityNet, and Hair Cross-Attention Layers to transfer the target hairstyle with highly detailed and high-fidelity to the bald image. Specifically, the Hair Extractor is trained to encode reference images with the desired hairstyles. To preserve the consistency of identity content and background between the source images and the transfer results, we employ a Latent IdentityNet to encode the source images. With the assistance of our Hair Cross-Attention Layers in the U-Net, we can accurately and precisely transfer the highly detailed and high-fidelity hairstyle to the bald image. Extensive experiments have demonstrated that our approach delivers state-of-the-art (SOTA) results among existing hair transfer methods. Project page: \textcolor{red}{\url{https://xiaojiu-z.github.io/Stable-Hair.github.io/}}2024: Yuxuan Zhang, Qing Zhang, Yiren Song, Jiaming Liuhttps://arxiv.org/pdf/2407.14078v1